A new approach to a posteriori error estimation for convection-diffusion problems. I. Getting started
نویسندگان
چکیده
A new a posteriori error estimation technique is applied to the stationary convection-reaction-diffusion equation. In order to estimate the approximation error in the usual energy norm, the underlying bilinear form is decomposed into a computable integral and two other terms which can be estimated from above using elementary tools of functional analysis. Two auxiliary parameter-functions are introduced to construct such a splitting and tune the resulting bound. If these functions are chosen in an optimal way, the exact energy norm of the error is recovered, which proves that the estimate is sharp. The presented methodology is completely independent of the numerical technique used to compute the approximate solution. In particular, it is applicable to approximations which fail to satisfy the Galerkin orthogonality, e.g. due to an inconsistent stabilization, flux limiting, low-order quadrature rules, round-off and iteration errors etc. Moreover, the only constant that appears in the proposed error estimate is global and stems from the Friedrichs-Poincaré inequality.
منابع مشابه
A posteriori error estimation of residual type for anisotropic diffusion-convection-reaction problems
This paper presents an a posteriori residual error estimator for diffusion– convection–reaction problems with anisotropic diffusion, approximated by a SUPG finite element method on isotropic or anisotropic meshes in Rd, d = 2 or 3. The equivalence between the energy norm of the error and the residual error estimator is proved. Numerical tests confirm the theoretical results.
متن کاملFunctional a Posteriori Error Estimation for Stationary Convection-diffusion Problems
A functional type a posteriori error estimator for the finite element discretisation of the stationary reaction-convection-diffusion equation is derived. In case of dominant convection, the solution for this class of problems typically exhibits boundary layers and shock-front like areas with steep gradients. This renders the accurate numerical solution very demanding and appropriate techniques ...
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملA Posteriori Error Estimates on Stars for Convection Diffusion Problem
In this paper, a new a posteriori error estimator for nonconforming convection diffusion approximation problem, which relies on the small discrete problems solution in stars, has been established. It is equivalent to the energy error up to data oscillation without any saturation assumption nor comparison with residual estimator.
متن کاملOn a Posteriori Error Estimates for One-dimensional Convection-diffusion Problems
This paper is concerned with the upwind finite-difference discretization of a quasilinear singularly perturbed boundary value problem without turning points. Kopteva’s a posteriori error estimate [N. Kopteva, Maximum norm a posteriori error estimates for a onedimensional convection-diffusion problem, SIAM J. Numer. Anal., 39, 423–441 (2001)] is generalized and improved. 2000 MSC: 65L10, 65L70.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006